

Pergamon

Tetrahedron Letters, Vol. 35, No. 24, pp. 4145-4148, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)E0731-C

Synthetic Studies on Tautomycin. Stereoselective Construction of the C₁-C₂₆ Region

Sei-ichi Nakamura and Masakatsu Shibasaki*

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract: A convergent, stereocontrolled synthesis of the C_1 - C_{26} portion of tautomycin has been achieved through the coupling of the fragments 3 and 4 by an aldol condensation.

Isono and co-workers reported the isolation of the novel antifungal antibiotic tautomycin (1) from a culture of *Streptomyces spiroverticillatus*¹ and more recently determined its structure.² It also exhibits a specific inhibition of protein phosphatases 1 and 2A.³ This interesting biological activity and its unique structure has tempted chemists to effect its total synthesis.⁴ To date, however, no such completed synthesis has been reported. Herein we describe our studies directed toward the synthesis of the polyketide portion of this molecule.

Retrosynthetic disconnection of the C_{16} - C_{17} bond generated two fragments of comparable complexity, namely the methyl ketone 3 and the aldehyde 4 (Scheme 1). Due to the potential ease of dehydration and retroaldol reaction about the C_{20} carbonyl moiety, we decided to incorporate it as a reduced form.

The synthesis of the C_1 - C_{16} fragment began with Swern oxidation⁵ of the known alcohol 5⁶ (Scheme 2). Auxiliary-based aldol reaction,⁷ subsequent transamination⁸ and protection with TESCI afforded 7 as an 8:1 mixture of two diastereomers. Reduction of 7, followed by Masamune-modified Horner-Emmons reaction⁹ with 8¹⁰ furnished the α , β -unsaturated ketone 9, which was hydrogenated with Raney Ni (W2). Treatment with a catalytic amount of CSA in MeOH at room temperature then resulted in removal of the TES group and pentylidene acetal, spiroketalization in one-pot, to give thermodynamically favored product 10 as a single isomer. Swern oxidation and Julia olefination¹¹ with the sulfone 11¹² provided 12 as a mixture of olefin isomers. Hydrogenation of 12, deprotection of the MPM group with DDQ¹³ and Parikh-Doering oxidation¹⁴

(a) (COCl)₂. DMSO, Et₃N, CH₂Cl₂, -78 to 0 °C, 97%; (b) 6, n-Bu₂BOTf, Et₃N, CH₂Cl₂, -78 to 0 °C, 94% (diastereoselection 89:11); (c) AlMo₃, MeONHMe-HCl, THF, -30 °C to r.t.; (d) TESCl, imidazole, DMF, r.t., 84% (2 steps); (e) DIBALH, THF, -78 °C, 99%; (f) 8, LiCl, *i*-Pr₂NEt, CH₃CN, r.t., 97%; (g) H₂, Raney Ni (W2), AcOEt, quant.; (h) CSA, MeOH, r.t., 98%; (i) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 to 0 °C, 97%; (j) 11, n-BuLi (2 equiv.), THF, -78 to 0 °C; (k) Ac₂O, Py, DMAP, CH₂Cl₂; (l) 5% Na-Hg, Na₂HPO₄, THF-MeOH (3:1), -20 to 0 °C, 42% (3 steps); (m) H₂, (Ph₃P)₃RhCl, PhH, 79%; (n) DDQ, CH₂Cl₂-H₂O (18:1), 97%; (o) SO₃-Py, DMSO, Et₃N, quant.

(Scheme 2)

completed the synthesis of the C1-C16 fragment 4.15

The C_{17} - C_{26} fragment was synthesized by the route outlined in Scheme 3. Monoprotection of the diol 13¹⁶ via formation of a stannylene acetal, followed by O-methylation and removal of the trityl ether, gave 14. Introduction of the isopropyl group was successfully achieved through a cyclopropanation-ring fission process. Hence the aldehyde, generated by Swern oxidation of 14, was subjected to the olefination reaction developed by Nozaki¹⁷ to afford 15. Cyclopropanation of 15 was carried out almost quantitatively using the conditions of Suda.¹⁸ Removal of the MPM group with DDQ then gave 16. Regioselective opening of the cyclopropane ring was achieved by hydrogenolysis with a catalytic amount of PtO₂ and the C₂₂-alcohol was protected with a Bn group; the only protecting group which would be resistant to the conditions utilized later. Transformation to the acyclic compound 18 was accomplished by transacetalization with HS(CH₂)₃SH, protection of the liberated alcohol with BzCl and removal of the thioacetal group. Subsequent diastereoselective aldol reaction and MPM protection under acidic conditions¹⁹ gave 19. At this juncture, in order to make it easy to carry out the deprotection at the last stage, exchange of the C_{22} protecting group was accomplished through the selective deprotection of Bn group with Raney Ni (W2) followed by reprotection with TESOTf. Hydrolytic removal of the chiral auxiliary with basic hydrogen peroxide²⁰ and direct conversion to the Weinreb's amide with DEPC²¹ afforded 21. Finally, treatment with MeLi provided the C₁₇-C₂₆ fragment 3.²²

With the two fragments 3 and 4 in hand, their coupling reaction was then investigated (Scheme 4).²³ Methylketone 3 was metalated with two equiv of LDA and the aldehyde 4 was added to the resulting enolate to give the aldol adduct 22 as a mixture of diastereomers with almost no selectivity (55:45). The aldol 22 was

(a) *n*-Bu₂SnO, PhMe, reflux; CsF, MPMBr, DMF, r.t., 85%; (b) NaH, Mel, THF, 0 °C to r.t., 97%; (c) HCO₂H-Et₂O-THF (4:3:1), r.t., 84%; (d) (COCI)₂, DMSO, *i*-Pr₂NEt, CH₂Cl₂, -78 to 0 °C, 97%; (e) Zn, CH₂L₂, AiMe₃, THF, 0 °C, 68%; (f) CH₃N₂, Pd(OAc)₂, Et₂O, 0 °C; 99%; (g) DDQ, CH₂Cl₂-H₂O (18:1), 93%; (h) H₂, PtO₂, AcOH, 91%; (i) NaH, BnBr, THF-DMF, 0 °C to r.t., 98%; (j) HS(CH₂)₃SH, BF₃ °OEt₂, CH₂Cl₂, 0 °C to r.t., 81%; (k) BzCl, Py, DMAP, CH₂Cl₂; (l) NBS, Me₂CO-H₂O (19:1), 86% (2 steps); (m) 6, *n*-Bu₂BOTT, Et₃N, CH₂Cl₂, -78 to 0 °C, 90%; (n) Cl₃CC(NH)OMPM, TIOH, Et₂O, r.t., 86%; (o) H₂, Raney Ni (W2), EtoH, 84%; (p) TESOTT, Et₃N, CH₂Cl₂, 0 °C, 92%; (q) LiOH, 30% H₂O₂, THF-H₂O (3:1), 0 °C to r.t.; (r) MeONHMe-HCl, DEPC, Et₃N, DMF, 0 °C to r.t., 79% (2 steps); (s) MeLi, THF, -78 °C, 92%.

(Scheme 3)

diacetylated and treated with DBU to afford 2^{24} possessing all the functionalities required for the total synthesis. Further studies to achieve the completion of the total synthesis of tautomycin are currently in progress.

(a) 3 (1.3 equiv.), LDA (2.6 equiv.), THF, -78 °C then 4, 65%; (b) Ac₂O, DMAP, CH₂Cl₂, 0 °C to r.t.; (c) DBU, CH₂Cl₂, 0 °C to r.t., 87% (2 steps). (Scheme 4)

Acknowledgement. This research has been supported by Fellowships of the Japan Society for the Promotion of Science for Japanese Junior Scientists.

References and Notes.

 Cheng, X.-C.; Kihara, T.; Kusakabe, H.; Magae, J.; Kobayashi, Y.; Fang, R.-P.; Ni, Z.-F.; Shen, Y.-C.; Ko, K.; Yamaguchi, I.; Isono, K. J. Antibiot. 1987, 40, 907-909.

- 2. Ubukata, M.; Cheng, X.-C.; Isobe, M.; Isono, K. J. Chem. Soc., Perkin Trans. I 1993, 617-624.
- (a) MacKintosh, C.; Klumpp, S. FEBS Lett. 1990, 277, 137-140. (b) Hori, M.; Magae, J.; Han, Y.-G.; Hartshorne, D. J.; Karaki, H. FEBS Lett. 1991, 285, 145-148.
- (a) Oikawa, M.; Oikawa, H.; Ichihara, A. Tetrahedron Lett. 1993, 34, 4797-4800. (b) Ichikawa, Y.; Naganawa, A.; Isobe, M. Synlett 1993, 737-738. (c) Ichikawa, Y.; Tsuboi, K.; Naganawa, A.; Isobe, M. Synlett 1993, 907-908.
- 5. (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660. (b) Mancuso, A. J.; Swern, D. Synthesis 1981, 165-185.
- 6. Walkup, R. D.; Boatman, P. D., Jr.; Kane, R. R.; Cunningham, R. T. Tetrahedron Lett. 1991, 32, 3937-3940.
- (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. (b) Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 83-91.
- 8. Levin, J. I.; Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12, 989-993.
- 9. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183-2186.
- The β-ketophosphonate 8 was prepared from (2R, 3R)-3-methylbutane-1,2,4-triol²⁵ in 5 steps, (1) Et₂C(OMe)₂, CSA, CH₂Cl₂, r.t., 83%; (2) Swern oxidation; (3) (*i*-PrO)₂P(O)CH₂CO₂Et, *t*-BuOK, THF, -78 °C to r.t., 93% (2 steps); (4) H₂, 10%-Pd/C, EtOH, 94%; (5) (MeO)₂P(O)CH₃, n-BuLi, THF, -78 °C, quant.
- 11. (a) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 4833-4836. (b) Kocienski, P. Phosphorus Sulfur 1985, 24, 97-127.
- The sulfone 11 was prepared from (S)-methyl 3-hydroxy-2-methylpropionate in 6 steps, (1) PhSSPh, n-Bu₃P, THF, 0 ℃ to r.t., 98%; (2) AlMe₃, MeONHMe-HCl, CH₂Cl₂, reflux, 95%; (3) MeLi, THF, -78 °C, 99%; (4) HO(CH₂)₂OH, PPTS, PhH, reflux, 99%; (5) m-CPBA, NaHCO₃, CH₂Cl₂, 0 °C, quant.; (6) HS(CH₂)₃SH, BF₃•OEt₂, CH₂Cl₂, 0 °C to r.t., 87%.
- 13. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021-3028.
- 14. Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505-5507.
- ¹H-NMR data of 4 (CDCl₃, 400MHz): δ 9.69 (d, 1H, J = 3.5 Hz, C₁₆-H), 3.99 (dd, 1H, J = 2.3 and 10.0 Hz, C₁₄-H), 3.21 (m, 1H, C₆-H), 2.74-2.97 (m, 4H, SCH₂CH₂CH₂S), 2.55 (ddq, 1H, J = 3.5, 6.8, and 10.0 Hz, C₁₅-H), 1.97-2.18 (m, 4H), 1.86 (m, 1H, one of SCH₂CH₂), 1.63 (s, 3H, C₁-H₃), 1.25-1.76 (m, 12H), 1.21 (d, 3H, J = 6.8 Hz, C₁₅-CH₃), 1.11 (d, 3H, J = 6.8 Hz, C₃-CH₃), 0.95 (d, 3H, J = 7.0 Hz, C₁₃-CH₃), 0.85 (d, 3H, J = 6.6 Hz, C₇-CH₃).
- 16. Corey, E. J.; Weigel, L. O.; Chamberlin, A. R.; Lipshutz, B. J. Am. Chem. Soc. 1980, 102, 1439-1441.
- 17. Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978, 2417-2420.
- 18. Suda, M. Synthesis 1981, 714.
- 19. Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. Tetrahedron Lett. 1988, 29, 4139-4142.
- 20. Evans, D. A.; Britton, T. C.; Eliman, J. A. Tetrahedron Lett. 1987, 28, 6141-6144.
- 21. Yamada, S.; Kasai, Y.; Shioiri, T. Tetrahedron Lett. 1973, 1595-1598.
- ¹H-NMR data of 3 (CDCl₃, 400MHz): & 7.23 (m, 2H), 6.87 (m, 2H), 4.45 (s, 2H, ArCH₂), 4.18 (ddd, 1H, J = 3.3, 6.2, and 6.6 Hz, C₂₂-H), 3.89 (ddd, 1H, J = 4.5, 5.8, and 7.0 Hz, C₂₀-H), 3.80 (s, 3H, ArOCH₃), 3.62 (ddd, 1H, J = 2.5, 2.8, and 8.6 Hz, C₂₄-H), 3.59 (d, 1H, J = 2.5 Hz, C₂₄-OH), 3.36 (s, 3H, C₂₃-OCH₃), 3.11 (dd, 1H, J = 3.3 and 8.6 Hz, C₂₃-H), 2.78 (dq, 1H, J = 4.5 and 7.0 Hz, C₁₉-H), 2.17 (s, 3H, C₁₇-H₃), 2.04 (ddd, 1H, J = 5.8, 6.2, and 14.4 Hz, one of C₂₁-H), 1.89 (dqq, 1H, J = 2.8, 6.8, and 6.8 Hz, C₂₅-H), 1.79 (ddd, 1H, J = 6.6, 7.0, and 14.4 Hz, one of C₂₁-H), 1.14 (d, 3H, J = 7.0 Hz, C₁₉-CH₃), 0.983 (d, 3H, J = 6.8 Hz, C₂₆-H₃), 0.978 (t, 9H, J = 7.9 Hz, Si(CH₂CH₃)₃), 0.92 (d, 3H, J = 6.8 Hz, C₂₅-CH₃), 0.66 (q, 6H, J = 7.9 Hz, Si(CH₂CH₃)₃).
- At first we synthesized the C₁₇-C₂₆ fragment as a β-ketophosphonate, but all attempts to couple with 4 by a Horner-Emmons reaction were unsuccessful.
- ¹H-NMR data of 2 (CDCl₃, 400MHz): \$ 7.23 (m, 2H), 6.85 (m, 2H), 6.80 (dd, 1H, J = 9.5 and 15.7 Hz, C₁₆-H), 6.31 (d, 1H, J = 15.7 Hz, C₁₇-H), 5.03 (dd, 1H, J = 3.7 and 7.2 Hz, C₂₄-H), 4.45 (d, 1H, J = 11.3 Hz, one of ArCH₂), 4.43 (d, 1H, J = 11.3 Hz, one of ArCH₂), 3.96 (ddd, 1H, J = 3.3, 6.0, and 7.4 Hz, C₂₂-H), 3.82 (m, 1H, C₂₀-H), 3.80 (s, 3H, ArOCH₃), 3.59 (dd, 1H, J = 2.0 and 10.3 Hz, C₁₄-H), 3.41 (s, 3H, C₂₃-OCH₃), 3.27 (dd, 1H, J = 3.3 and 7.2 Hz, C₂₃-H), 3.22 (m, 1H, C₆-H), 2.87-3.00 (m, 3H, C₁₉-H, two of SCH₂CH₂CH₂S), 2.73-2.83 (m, 2H, two of SCH₂CH₂CH₂S), 2.42 (ddq, 1H, J = 6.5, 9.5, and 10.3 Hz, C₁₅-H), 1.99 (s, 3H, C₂₄-OCOCH₃), 1.65 (s, 3H, C₁-H₃), 1.24-2.16 (m, 20H), 1.17 (d, 3H, J = 6.8 Hz, C₁₉-CH₃), 1.16 (d, 3H, J = 6.5 Hz, C₁₅-CH₃), 1.10 (d, 3H, J = 6.8 Hz, C₃-CH₃), 0.95 (t, 9H, J = 8.0 Hz, Si(CH₂CH₃)₃), 0.89-0.94 (m, 6H, C₂₆-H₃, C₂₅-CH₃), 0.82-0.88 (m, 6H, C₇-CH₃, C₁₃-CH₃), 0.61 (q, 6H, J = 8.0 Hz, Si(CH₂CH₃)₃).
- 25. Nicolaou, K. C.; Papahatjis, D. P.; Claremon, D. A.; Magolda, R. L.; Dolle, R. E. J. Org. Chem. 1985, 50, 1440-1456.

(Received in Japan 25 February 1994)